The Spectral Construction for a (1,8)-Polarized Fam- ily of Abelian Varieties

نویسنده

  • Anthony Bak
چکیده

We extend the Spectral Construction, a technique used with great success to study and construct vector bundles on elliptically fibered varieties, to a special family of abelian surface fibered varieties. The results are motivated by requirements from Heterotic String Phenomenology where vector bundles with specified chern class are required to produce a realistic particle spectrum. Although only certain (1,8)-polarized families of abelian surfaces are considered here we expect the main ideas to carry over to other families of abelian varieties with a uniform relative polarization type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 03 34 0 v 1 [ m at h . A G ] 1 6 M ar 2 00 5 WEYL GROUPS AND ABELIAN VARIETIES

Let G be a finite group. For each integral representation ρ of G we consider ρ−decomposable principally polarized abelian varieties; that is, principally polarized abelian varieties (X,H) with ρ(G)−action, of dimension equal to the degree of ρ, which admit a decomposition of the lattice for X into two G−invariant sublattices isotropic with respect to IH , with one of the sublattices ZG−isomorph...

متن کامل

Principally Polarized Ordinary Abelian Varieties over Finite Fields

Deligne has shown that there is an equivalence from the category of ordinary abelian varieties over a finite field A: to a category of Z-modules with additional structure. We translate several geometric notions, including that of a polarization, into Deligne's category of Z-modules. We use Deligne's equivalence to characterize the finite group schemes over k that occur as kernels of polarizatio...

متن کامل

Arithmetic Torelli Maps for Cubic Surfaces and Threefolds

It has long been known that to a complex cubic surface or threefold one can canonically associate a principally polarized abelian variety. We give a construction which works for cubics over an arithmetic base, and in particular identifies the moduli space of cubic surfaces with an open substack of a certain moduli space of abelian varieties. This answers, away from the prime 2, an old question ...

متن کامل

Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques. (Applications of theta functions for hyperelliptic curve cryptography)

Since the mid 1980’s, abelian varieties have been widely used in cryptography: the discrete logarithm problem and the protocols that rely on it allow asymmetric encryption, signatures, authentification... For cryptographic applications, one of the most interesting examples of principally polarized abelian varieties is given by the Jacobians of hyperelliptic curves. The theory of theta functions...

متن کامل

Fourier-mukai Transforms for Abelian Varieties and Moduli of Stable Bundles

We classify Fourier-Mukai transforms for abelian varieties. In the case of a principally polarized abelian surface these are then used to identify a large family of moduli spaces of stable vector bundles as Hilbert schemes of points on the surface.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009